Исследователи из Uber AI Labs и OpenAI разработали алгоритм, который играет лучше человека в игру «Месть Монтесумы» (Montezuma’s Revenge). Эта игра вышла в 1983 году, но до сих пор ИИ с ней справиться не мог. В университете Осаки обучили нейросеть искать оптимальный состав для фотоэлементов. Компания D-ID разработала нейросеть, создающую короткий видеоролик по единственной фотографии.

Искусственный интеллект понемногу осваивает хаос реального мира
Команда разработчиков из Uber AI Labs и OpenAI опубликовала в Nature алгоритм, играющий в гораздо более сложные (платформенные) игры Atari: Montezuma’s Revenge («Месть Монтесумы») и Pitfall («Ловушка»). Если в «Месть Монтесумы» другие алгоритмы еще как-то могли играть, то в «Ловушку» не удавалось набрать даже 1 очко. Проблема этих игр в неопределенности при обучении. В «Мести Монтесумы» персонаж собирает сокровища, блуждает по лабиринту, решает загадки, ищет ключи, использует факелы, мечи, амулеты. Ему постоянно угрожают черепа, змеи и пауки. В такой игре не очень ясно, как использовать обучение с подкреплением, поскольку правильных путей может быть несколько, а препятствия имеют случайный характер. В нее гораздо труднее обучаться играть «с нуля», как, например, в Арканоид. Но исследователи справились, и алгоритм превзошел человека в "Мести Монтесумы». (В «Ловушку» играть нейросеть тоже умеет, правда, пока не так удачно). Алгоритм назвали Go-Explore — «Беги-и-Исследуй» (или даже «Исследуй на ходу», что довольно точно соответствует его работе). Оказалось, что очень помогает «знание предметной области». Если алгоритм сначала «читал инструкцию», а потом играл — результаты были лучше в разы.
В общем, читать инструкцию полезно и нейросети, и человеку. Она действительно сокращает «опыты быстротекущей жизни».
Владимир Губайловский
Свежие комментарии